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A series of measurements, obtained using arrays of hot-wire anemometers, has been 
performed in the fully developed region of a plane turbulent jet. The anemometer 
output signals were simultaneously sampled, digitized with sufficient resolution for 
numerical linearization, and recorded on magnetic tape for subsequent analysis. 

The data was processed to extract information about the structure of the large 
eddies within the flow. Firstly, a selection of the two-point velocity correlation func- 
tions was evaluated, and diagrams of the contours of constant correlation for the 
streamwise velocity component were constructed. Secondly, an iterative procedure 
similar to the techniques generally described as ‘pattern recognition and image 
enhancement’ was used to form ‘ensemble’ averages of the two-dimensional patterns 
of the streamwise velocity component associated with the large eddies. 

The results indicate that the large eddies in the fully turbulent region of the flow are 
roller-like structures with axes aligned approximately either with the direction of the 
strain associated with the mean-velocity gradient or with the direction of homogeneity 
(spanwise). It was found that these basic structures tended to occur in various preferred 
combinations. Estimates were obtained for the total intensity contribution from the 
large eddies, the ranges of sizes and intensities of the individual structures, and their 
effective packing density. 

1. Introduction 
For a wide variety of unsteady flows the presence of organized structures or ‘large’ 

eddies within velocity fields exhibiting various degrees of chaos has become a central 
feature of the formulation of mechanistic or phenomenological models. I n  cases where 
the velocities associated with the structures constitute a large proportion of the total 
intensity of the fluctuations, their existence and degree of organization can usually 
be demonstrated by flow-visualization techniques. The most familiar example is 
probably the vortex shedding from a circular cylinder, and in this case observations 
at various Reynolds numbers and downstream distances reveal ranges of both scales 
of coherence and relative intensities of the vortices to the remaining motion. 

Probably the most objective method of decomposing an arbitrary velocity field 
into a set of organized structures is that proposed by Lumley (1965), in which the 
eddies are identified with the eigenfunctions of the correlation matrix. This method, 
however, suffers from a number of difficulties, and most authors have used an eddy 
model of the general form described by Townsend (1970,1976). Although this approach 
seems to  have greater intuitive appeal, the problem of giving an exact specification 
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of the decomposition of the velocity field is quite complicated. While the word ‘or- 
ganized’ has been used in the present description, the structures are more commonly 
referred to in the literature as ‘ coherent ), and this property is usually defined such 
that it may be ascribed to an individual structure, without reference to the remainder 
of the flow field. Partly for this reason, many authors have given the impression that 
an individual structure may be identified on the basis of some intrinsic property of 
its own velocity field, This approach is not very helpful since, on the basis of a single 
example, it is not possible to distinguish between an organized structure and a sta- 
tistical fluke. Only the relatively frequent recurrence of similar spacially localized 
velocity patterns indicates organization of the individuals. 

In  order to express this property more precisely, it is convenient to  consider the 
joint probability density of the velocities simultaneously measured a t  a large number 
of points, distributed throughout a volume with linear dimensions somewhat greater 
than the typical length scales of the flow. The presence of organized structures would 
imply that, in certain regions of the velocity space, the density is significantly greater 
than that which would have been obtained by ascribing equal probabilities to all the 
mechanically possible velocity fields satisfying the same integral constraints as the 
actual flow. In  the case of the vortex shedding from a cylinder, for example, the 
system is almost always found in the vicinity of a certain closed orbit in velocity 
space. In  considering flows of greater complexity, however, it is clear that, as the 
number of ‘degrees of freedom ’ of the individual structures increases, t,he possibility 
of extracting information about them, or even establishing their existence, becomes 
more remote. For this reason most experimental investigations have involved flows 
where the structures are heavily constrained in terms of their possible positions and 
orientations. 

In recent years a considerable amount of investigation has been directed towards 
the determination of the shapes and internal velocity distributions of the structures 
occurring in a variety of flows, and a summary of much of this work has been given by 
Davies & Yule (1975). While it is difficult to generalize, the experiments tend to have 
been concentrated into three main groups: 

(i) structures in mixing layers and jets during their early development; 
(ii) structures in the intermittent regions of fully developed shear flows; 
(iii) structures in boundary layers closely related to motions near the wall. 

In  almost all cases, the structures have some ‘sharp’ feature associated with them, 
so that they may be identified and located by a relatively simple local condition being 
satisfied somewhere in the flow. There are, of course, exceptions to this, and more 
complex detection schemes have been described by a few authors, notably Wallace, 
Brodkey & Eckelmann (1977) and Townsend (1979). 

The large eddies in the fully turbulent regions of the shear flows are somewhat more 
illusive, for reasons discussed by Blackwelder (1979). Apart from the absence of any 
sharp identifying features, the intensity of the structures is not particularly large 
compared with that of the remaining motion. Furt?hermore, in addition to their 
positional (and possibly orientational) degrees of freedom, it seems very probable that 
significant ranges of both sizes and intensities exist for structures of generally similar 
type. These factors, combined with the difficulty of devising unambiguous flow- 
visualization experiments, have undoubtedly led to a degree of scepticism about their 
existence. 
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FIGURE 1. Co-ordinate system (a )  and scaling factors ( b )  for the plane jet. 

Attempts to deduce the form of the large eddies in these flows from measurements 
of the two-point velocity correlation function have been made by Grant (1958) in 
the plane wake and the boundary layer, and by Mumford (1973) in the plane jet. I n  
addition, Payne & Lumley ( 1967) have performed the eigenfunction decomposition 
of Grant’s measurements in the wake. In  the present series of experiments, data ob- 
tained in fully developed shear flows, using an array of hot-wire probes, has been 
processed to  yield ‘ensemble ’ averages of the two-dimensional patterns of the stream- 
wise velocity component associated with the large eddies. The technique, and the 
results of a number of tests using simulated signals, are described in $ 5 .  The main 
experimental results for the plane jet are contained in $9 6 and 7, and the results from 
other Aows are presented in subsequent parts. 

2. Experimental arrangement : the plane jet 
The jet consisted of a slot, 2.5 mm high and 0.4 m wide, in one end of a settling 

chamber 60 mm high and 0.7 m long. From this the air discharged freely into the 
room, except for being confined horizonbally between two vertical walls 0.4 m apart, 
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0.55 m high and 0.6 m long. The settling chamber was 0.4 m wide over the final 0.3 m 
of its length, tapering to 60 mm wide a t  the inlet. It was fitted with four 1.5 mm mesh 
wire screens, and was supplied with air from a centrifugal blower via a flexible hose 
0.9 m long and 60 mm diameter. The jet speed could be controlled by an adjustable 
flap over the blower intake, and was normally set at  65 m/s. This gave a Reynolds 
number based on slot height and exit velocity of approximately lo4. 

The co-ordinate system used for the experiments, and the scaling factors for the 
various measurements are illustrated in figure 1. The total velocity will be denoted by 
( U ,  V ,  W ) ,  and the fluctuating velocity by 

(U,@,W) = (u,v,w)-(qv,w),  
where an overbar denotes the time average. The measurements were performed at  
a downstream distance X of 0.4 m (160 slot heights), where the mean velocity U,(X) 
on the jet centre plane was 10.7 m/s and the half-width Z,(X) was 44 mm. 

The mean flow uniformity in the Y-direction was checked with a total head tube at  
a number of (X, 2)-positions. At X/d = 160, the total head variations at Z = 0 were 
within 5 yo of the mean over the central 0.3 m of the total width of the flow (0.4 m). 
At the same position, hot-wire measurements of (G)* indicated variations within 5 % 
of the mean over the central 0.16 m of the flow. The uniformity, however, deteriorated 
with increasing Z*, and deviations of 10 % were found at Z* = 1. 

3. Instrumentation 
3.1. Hot-wire anemometers 

The velocity measurements were performed with hot-wire probes constructed from 
Wollaston wire with a core diameter of 2.5 pm. The wire was etched over a length of 
approximately 1.5 mm, and this etched section was held under slight tension by the 
curvature of the surrounding unetched wire. The probes were used with constant- 
temperature anemometer circuits giving a frequency response 3 dB down a t  appro- 
ximately 50 kHz. 

The probes were calibrated in a low-turbulence wind tunnel to obtain the variation 
of anemometer output voltage with flow velocity and, in the case of the X-wires, 
with flow direction. The velocity dependence was fitted (least-squares) with a curve 
of the form 

V2 = A + B U t + C U  (3.1) 

(Bruun 1971), where V is the anemometer output voltage, U is the velocity, and A ,  B 
and C are fitted constants. The angular dependence was fitted (least-squares) with 
the function 

(3.2) U,,, = U(cos2 (8, + e)  + /$sin2 (8, + el)* 
(Champagne, Sleicher & Wehrmann 1967), where Ver, is the ‘effective cooling velocity ’, 
U is the actual velocity, 8 is the angular deviation (in the plane of the X-wire) from 
the calibration position, and 8, and k2 are fitted constants. 

3.2. Signal-processing equipment 
The anemometer outputs (up to 8 channels) were directly coupled via amplifiers with 
adjustable gain and offset into sample-and-hold circuits. The outputs of these were 
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Velocity (m/s) 5 10 15 

TABLE 1 

fed via an &into- 1 analogue multiplexer into a successive approximation digitizer 
with a resolution selectable at either 8 or 12 bits, with conversion cycle times of 
35 ,us and 50 ,us respectively. The frequency response of the combination of amplifiers 
and sample-and-hold circuits was 3 dB down at  250 kHz. 

The digitizer output was recorded on a Precision Instruments Model PI 1400 9- 
track tape-recorder, fitted with two 4K buffers. This permitted maximum continuous 
transfer rates of 22500 samples/s at  &bit resolution, and 11250 samples/s at 12-bit 
resolution. 

The tapes were analysed on the University of Cambridge Computing Service 
IBM 370/165. 

3.3. Calculation of the velocities from the digitized voltages 
The velocities were obtained by the exact solution of (3.1) and (3,2). For single straight 
wires, the U-component was calculated from (3.1) as 

For the range of velocities encountered in the experiments, the typical velocity 
resolution obtainable using a 12-bit digitizer and a fixed offset voltage is summarized 
in table I. For X-wires, the pairs of simultaneously sampled voltages 6 (i = 1,2) 
were converted into corresponding ‘ calibration ’ velocities using (3.3) with constants 
Ai, Bi and Ci. These velocities are not the actual velocities experienced by the probe, 
but the velocities that would have been required in the calibration tunnel (with the 
probe at its calibration angle) to produce the observed voltages. Using S to denote 
the resolved component of the total veIocity in the plane of the X-wire, (3.2) gives 

U,(COS~ 8,, + k: sin2 OOl)* = S(COS~ (OOl + 8 )  + k: sin2 (8,, + @)*, 

U,(COS~ BOz + kg sin2 8,,)* = S(COS~ (OO2 - 8) + kg sin2 (BOz - @)*, 

where 8 is the deviation of the direction of S from the calibration angle. 

ples, and the velocity components obtained from 
These simultaneous equations for S and 8 were solved for each pair of voltage sam- 

U = Scos8 and V or W = Ssin8. 

4. Correlation measurements 
The correlation function for two arbitrary flow variables p and q is defined by 

where the overbar denotes the time average. For the plane jet, the value of Y is 
irrelevant, and the property of self-preservation (Townsend 1 976) implies that changing 
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FIGURE 2. Contours of constant R,,(O.67, (0, y*, 0) ,  t * )  (a) ,  
R,,,(1.0, (0, y*, O), t*) (6 )  and RdO-67 ,  (0, 0, z*) ,  t*)  (4. 

X simply changes the scales of 2, r and t .  (This property was demonstrated experi- 
mentally in Mumford 1973.) The correlation function will therefore be written as 
R,,(Z*, r*, t * ) .  Using the eight probes in a row parallel to  either the Y -  or 2-directions, 
the R,, correlation was evaluated over the (y, t ) -  and (2 ,  t)-planes respectively. Some of 
the results are shown as contours of constant correlation in figures 2(u)  (R,,(0.67, 
(0, y*, 0 ) ,  t * ) ) ,  2 ( b )  (Ru,(l.O, (0, y*, 0 ) ,  t * ) ) ,  2 ( c )  (Ru,(0.67, (0 ,  0, z * ) ,  t " ) ) .  The regions in 
the diagrams enclosed within the dashed contour lines represent saddle points where 
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the correlation is close to zero. A muchlonger averaging time would have been required 
to determine which of the two possible interconnections of the zero contours is correct. 

The results are in good agreement with those presented in Mumford (1973), which 
wereobtained at  X l d  = 40 using an x-displacement insteadof a time delay. Thegeneral 
features of the correlation maps are also very similar to those obtained by Kovasznay, 
Kibens & Blackwelder (1970)f. for the turbulent boundary layer on a flat plate. It 
should be noted, however, that other boundary-layer measurements (Grant 1958; 
Tritton 1967)t suggest that R,,(Z,(x, 0 ,  0 ) ,  0)  is always positive in the fully turbulent 
region of the flow, so that the negative values of R,,,(Z, 0, t )  found by Kovasznay et 
al. for large It1 may not have a simple interpretation in terms of the eddy structure. 

In  order to explain the shapes of the correlation maps in the jet, it was suggested 
in Mumford (1973) that the large eddies consisted of roller-like structures having a 
component of circulation in the (x, y)-plane and axes in the (x, 2)-plane at angles of 
approximately sgn (2) x 135” to the X-axis (figure l l a ) .  By using a combination of 
such single rollers and contrarotating pairs with their axes displaced in the X-direction 
(figure 11 b) it was possible to account for the R,, correlations in the (x, y)-plane and 
half the (x, 2)-plane. While the flow patterns in figure 11 have been depicted parallel 
to the (x,y)-plane, from the R,, measurements alone, no inference can be made 
regarding the distribution of the u, velocity component. Consequently, the flow 
patterns may well be inclined to the (x,y)-plane (figure 5), so that their vorticity is 
more nearly parallel to the roller axes, and may also have curvature in the (x, 2)-plane. 
An arrangement of this sort appears to be generally consistent with t,he shapes of the 
contours of constant R-(Z, (x, y, 0 ) ,  t )  and R,,(Z, (x, y, 0 ) ,  t )$  found by Kovasznay 
et al. ( 1  970) in the fully turbulent region of the boundary layer. In addition, these 
‘strainwise’ rollers have a number of features in common with the large eddies found 
by Grant (1958) in the plane wake. 

The negative correlation obtained between points on opposite sides of the jet 
centre plane is, however, in marked contrast with the behaviour found in the wake, 
where the roller eddies continued across the centre plane, making R,,(Z*, (0, 0, x*), 0 )  
positive over the entire width of the turbulent region. In  the jet, provided Z* was 
not too small, R,,(Z*, (0 ,  0, z*), 0)  changed sign when x* 2: -Z*, indicating that the 
contributing structures have only a small range of possible positions in the Z-direction. 
The shapes of the 0.0 and - 0.05 contours in figure 2 (c) give some indication that the 
region of negative correlation is aligned with the roller axes. Prom the R,, correlations 
alone, however, it is not clear whether this feature is associated with the strainwise 
rollers or with some additional structures of a different type. The most obvious 
possibility is the presence of ‘spanwise’ rollers, having a circulation in the (x,z)- 
plane, centred approximately at  Z = 0. A sequence of such structures, alternating in 
sign, would appear as a flapping motion, which has been suggested as a possible con- 
stituent of the jet by a number of investigators. 

In  an attempt to find evidence for motions of this type, measurements of correlations 
involving the transverse velocity components were performed. Some of the results are 
shown in figure 3 (a)  

(R,,(O, (0, 0, x * ) ,  t * )  for x* = 0.67 and 1.1) 

and 3 ( b )  (R,,(Z*, (0 ,  0, lei), t * )  for Z* = 0 and - 0.55). 
t For comparison with the present work, most authors have the Y -  and Z-axes interchanged. 
$ BVv,(X,,, 0, 2, 2’) arid Ru&X,,, 0, 2, 7’) in tho reference. 
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The presence of spanwise rollers should yield characteristic shapes (figure 4) 
for these correlations. An example of this is given by Sabot and Comte-Bellot 
(1976), who found R,, (R12 in their notation) curves of this type in turbulent 
pipe flow. Casual examination of figure 3 indicates that, while R,, has the expected 
form, R,, is consistent only with the upstream half of the spanwise roller pattern. 
There are, however, two detailed features of the R,, curves that suggest an alterna- 
tive explanation: 

(i) the positions of the negative regions at negative t* are consistent with a con- 
tribution from the paired strainwise rollers; 

(ii) at  certain values oft* the curvature is quite large, which suggests contributions 
from two (or more) types of structure, differing in scale (Townsend 1976). 
While the precise distribution of the w velocity component within the strainwise 
rollers is unknown, the general features of the R,,(O, (0, 0, x * ) ,  t * )  correlation contri- 
buted by these structures will be of the form illustrated in figure 5,  and the principal 
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effect of increasing z* will be to shift the entire curve towards more positive values of 
t* .  For the spanwise rollers in figure 4 the effect of increasing z* will be to change the 
amplitude of the R,,, curve, and increase its spread along the t* axis (Sabot & Comte- 
Bellot 1976). The features of the curves in figure 3(a )  are thus consistent with the 
presence of both strainwise and spanwise rollers; the relatively small values of R,, 
obtained for positive t* being due to a degree of cancellation between the two 
contributions . 

A similar effect may have occurred for some of the R,,(Z*, (0, y*, 0) ,  t*)  correlations. 
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FIGURE 5. The R,, correlation for a combination of single and paired strainwise rollers. 

Provided the spanwise structures are coherent over a sufficient distance in the P- 
direction, they will make a positive contribution to RUu(Z*, (0, y*, O ) ,  O )  at values of 
y* where this correlation is negative. A tentative estimate of the coherence length of 
these structures can be obtained from the variation of R,(Z*, (0, y*, - 22*) ,  0) with 
y*, and a value of approximately 3 2 ,  was found. (This figure seems consistent with 
the estimate of the packing density of the strainwise rollers given in 0 7.) 

The orientations and positions of the two types of structure naturally suggest the 
possibility that they are joined together, and evidence for this is presented in $ 6 .  
The velocity patterns in the (x, 2)-plane produced by this arrangement are shown in 
figure 13. The correlation map (figure 2 c )  obtained with the reference probe at 
Z* = 0.67 will contain contributions from the patterns 1 A ,  1 B, C and 2 B (in figure 
13), the 2B contribution giving the alignment of the region of negative correlation 
for Z < 0 with the strainwise rollers. The correlation maps obtained with the reference 
probe at  somewhat larger values of Z* contained corresponding negative regions for 
Z < 0,  but these were of smaller amplihude and showed no obvious alignment, indicat- 
ing that the principal contributions were from patterns 1 A and 1 B. 

The interpretation of the correlation measurements becomes increasingly uncertain 
for values of Z* exceeding approximately 1.5. This is partly because of the contri- 
bution from the large-scale motions associated with the entrainment of irrotational 
fluid, and partly because of the intermittency of the turbulence. For the correlations, 
the most significant effect is caused by the difference between the ‘zone-averaged’? 

7 For a definition see Kovasznay et al. (1970). 
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FIGURE 6. Contours of constant BUu( 1.0, (1.0, 0.2, z*),  t * )  (a)  and 
R,,(1.0, (2.0, 0.2, z*) ,  t * )  ( b ) .  

mean velocities in the turbulent and irrotational parts of the flow. From measure- 
ments of the zone-averaged probability densities of u, it was shown in Mumford (1973) 
that this difference is sufficiently large to account for almost 0 .52 at Z* = 2.0. Under 
these circumstances, the forms of the correlations involving the u-component may be 
determined more by the shapes of the turbulence interface than by the flow patterns 
within the turbulent fluid. 

Some information about the development of the large eddies as they are convected 
downstream can be inferred from space-time correlations, and contour maps of 
R,,(1.0, (x*, 0.2, z*), 1")  are shown in figures 6 (a) (x* = 1.0) and 6 ( b )  (2" = 2.0). These 
results were obtained using a rake of seven probes aligned in the Z-direction, and 
displaced from the eighth probe by x* in the stream direction, and by a distance of 
approximately 0.22, in the Y-direction to avoid the effects of the wake of the up- 
stream probe. The' rapid decay of the maximum (i.e. optimum-delay) correlation 
with downstream distance is a property common to all the 'high intensity' flows 
(see e.g. Wygnanski & Fiedler 1969; Fisher & Davies 1964), and a discussion of the 
expected behaviour of the space-time correlation function has been given by Townsend 
(1970). While the contribution from the small-scale components is rapidly lost, the 
contours drawn at  heights 0.2 change rather slowly with downstream distance. 
This suggests that the large-scale structures tend to preserve not only their size and 
shape but also their orientation in the (x, 2)-plane, over the range of x* and t* covered 
by the experiments. A similar result was found in the boundary layer by Kovasznay 
et al. (1970), although Sternberg (1967) has given a rather different interpretation of 
the results obtained by Favre, Gaviglio & Dumas (1957, 1958) in the same flow. Some 
values of the apparent convection velocity for the structures in the jet are given in 
Mumford (1973). 

9 F L M  I18 
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5. Determination of the structure of the large eddies 
5.1. General principles 

While the two-point correlation functions may give a strong indication of the types 
of large eddies to be found in the various flows,’ the amount of detail available is 
necessarily very limited. This is because the contribution to the correlation function 
R,,(R, r, 0) is obtained by multidimensional integration of the eddy velocity cross 
products over (at least) all possible eddy positions, and is consequently extremely 
insensitive to the detailed structure of the eddy velocity fields. Any procedure that 
attempts to deduce the form of these fields from measured correlation functions is 
therefore subject to considerable uncertainty. 

The use of an array of probes, to enable the simultaneous measurement of the fluid 
velocity at a number of positions, should yield the required structural resolution, 
provided suitable methods of analysis can be developed. The traditional techniques 
of turbulence analysis when applied to an array of probes, to yield multipoint 
correlations, multidimensional probability densities, multiple conditionally samp- 
led averages, etc., seem to suffer from a number of practical difficulties, not 
least of which is the problem of presenting the results in a form that is readily 
assimilated. 

The method employed in the present investigation attempts to form ensemble 
averages of the large eddies, to yield two-dimensional maps of the u-component of 
the eddy velocity fields. To achieve this, it is first necessary to identify and locate 
the large eddies which are randomly positioned in the random velocity field of the 
remaining turbulent motion. The procedure, consequently, has many features in 
common with the techniques of ‘pattern recognition ’ and ‘image enhancement ’, 
which have in recent years been used on a wide selection of scientific problems, though 
with varying degrees of success. 

Using eight probes equally spaced in a row parallel to either the Y -  or 2-directions, 
the data may be considered as a two-dimensional map of the u-component of velocity 
over the (x, y)- or (x, 2)-planes respectively (see figure 7) .  The necessity of using a time 
delay instead of an x-displacement suggests that the data will only be a good approxi- 
mation to the instantaneous velocity field if the ‘frozen pattern’ approximation 
(Taylor’s hypothesis) is valid. In the jet, this is not the case, as the ‘moving-frame 
autocorrelation ’ initially falls quite sharply with downstream distance. In the present 
context, however, we require only that the approximation holds for the large-scale 
structures under investigation, even though it is not valid for the smaller-scale 
motions. The results from $ 4  indicate that the large eddies change relatively slowly 
with downstream distance, so that the frozen-pattern approximation should be quite 
reasonable for these structures. 

Starting with an initial guess at  the eddy-velocity pattern (based on either visual 
inspection of the data or correlation measurements), the data is scanned to find 
occasions on which the velocity field gives a relatively good match to this pattern. 
This set of velocity fields is taken as the ensemble from which a first estimate of the 
average is obtained. The initial guess is then replaced by this average, and the pro- 
cess is iterated until it converges. 

There is, unfortunately, no guarantee that such a procedure will be practicable for 
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In the present investigation, the matching of the ‘test’ pattern with the data is 
assessed on the basis of the convolution of the two velocity fields. There are, of course, 
a number of alternative matching criteria that  could have been used, but the con- 
volution method has the simplifying property that the selection of matching patterns 
does not depend on the amplitude of the test pattern. Whatever method of selection 
is employed, the presence of a range of sizes, orientations and intensities for structures 
of a given type will mean that any average is subject to the weighting implied by the 
method of selection. I n  particular, the use of the convolution means that for structures 
of a given size only the most intense examples will be selected, and that the minimum 
intensity required for selection is size-dependent. 

In  addition, the presence of a range of sizes in the ensemble will limit the resolution 
available in the average, even if the various practical limitations, which will become 
apparent in the following sections, could be overcome. 

5.2. Summary of operations in the programme 

From the original data, the mean velocity is calculated for each of the eight channels, 
and subtracted to yield the fluctuations uii for i = 1, ..., 8 and j = 1, ..., 32K 
(typically). These signals are then individually low-pass filtered and scaled with their 
respective r.m.s. values to give an array denoted by uij. The filtering was performed 
by a method which simulates the action of an n-stage ‘CR’ filter giving a roll-off of 
6n dB/octave. In  most cases, a single stage was used with a cut-off frequency (3  dB 
down) at 0-4F0 (typical value). This corresponds to a time constant approximately 19 
times the streamwise grid spacing on the velocity contour maps. 

The use of a filter is not essential, but gives a reduction in the scatter of the results. 
The selection of the cut-off frequency has to be something of a compromise. A reduc- 
tion in the amplitude of the higher-frequency (smaller-scale) components in the data 
will reduce both the uncertainty in the positions of the patterns and the statistical 
scatter on taking the ensemble average. Excessive filtering will, however, reduce the 
available structural resolution. 

Using Urn, (m = 1 ,..., 12 typically and n = 1 ,..., 32 typically) to  denote the 
‘test’ pattern or initial guess, and an asterisk (*) to denote an externally selectable 
option, the following operations are performed. 

(i) Form the set of all convolutions 

c 4, nfk-1  q + l - I ,  n 
i=1 ,  ..., 8 

n= 1, . . ., nmaa 

Ck, = 

for 
1 = 1, ..., m,,, - 7 and k = 1, . . ., j,,,- nmax + I. 

(ii) For this set, calculate the r.m.s. value (=  C,,,) and the flatness factor. 
(iii) For each k, find the value of 1 (=  I,,,) corresponding to either 

or * 
(a )  the largest C,, 

( b )  the largest lCkll 

(depending on symmetry). 

(iv) Find the values of k giving either ( a )  Cklmnn or ( b )  IC,,,,,I greater than some 
selected number* of C,,,. 
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FIGURE 8. Test using normally distributed random numbers. 

Defining a 'burst ' to be set of one or more successive occasions on which this condition 
is satisfied, perform the following operations. 

(v) Select bursts with lengths in a specified range". 
(vi) For each such burst, find the value of k corresponding to either the centre or" 

the maximum of either (a )  Ckl,,, or (6) /Cklmax/. 
(vii) Form the ensemble average from these values of k by adding (or, for option ( 6 )  

in the case of negative Ckl,,,, subtracting) the corresponding velocity patterns uij 
(i = 1, . . . ,8 ,  j = k, . . . , k: + 31) in transverse positions determined by l,,,, and dividing 
each column of the resulting pattern by the number of times it has been incremented. 

The pattern is then plotted as a scaled diagram wit'h an arrow at each grid point 
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indicating the magnitude and direction of the u-component, and contours of constant 
u drawn at  values 5 0.7,  f 0.5, f 0.35, 5 0.25, & 0.1,  and 0 times the peak velocity 
in the pattern. Unfortunately, many of the arrows are too small to be reproduced 
reliably, and some large arrows indicating direction but not magnitude have been 
added for clarity, in particular, at  positions of local maxima. 

5.3. Testing with simulnted signals 

The only satisfactory method for checking that the programme functions correctly, 
and for assessing its performance of the task for which it was designed, is by testing 
with numerically generated data of known statistical properties. Possibly the most 
unusual feature of the procedure described in fj 5.2 is that there is no absolute criterion 
for the ‘goodness of fit’ required for inclusion in the average - a ‘relatively’ good fit 
is sufficient. Under these circumstances it is clear that a pattern bearing some sort 
of resemblance to the original will be extracted from data consisting of totally random 
numbers, or, equivalently, a pattern would be extracted from turbulence which did 
not contain organized structures. An essential test, therefore, is to apply the pro- 
gramme to data consisting of normally distributed random numbers. Some of the 
results of this are shown in figure 8. The central diagram was obtained from totally 
random numbers, and the upper diagram from random numbers that had been 
filtered so that their spectral energy distribution was similar to that of turbulence. As 
expected, the results are simply ‘noisy’ replicas of the initial guess, with no obvious 
indications of any systematic change of size or shape in the filtered case. In the un- 
filtered test, such changes would be impossible to detect. 

In order to test the efficiency with which the programme would extract organized 
structures, a series of simulated signals was used. These consisted of arrays of normally 
distributed random numbers with superimposed ‘eddies ’ in random positions. The 
eddies consisted of small arrays of numbers representing a velocity field of the type 
depicted in the lower diagram of figure 9(a). This type of structure (‘ box eddy’) was 
used in preference to something more realistic because it enables the resolution of fine 
detail to be assessed. A series of tests was performed to determine the effects of 

(i) the amplitude of the eddies relative to the r.m.9. of the random numbers; 
(ii) the packing density of the eddies; 
(iii) the exclusion of overlaps in the random positioning of the eddies; 
(iv) a distribution of eddy sizes; 
(v) a distribution of eddy intensities; 

and various combinations of these. It was originally hoped that it would be possible 
to infer some of the statistical properties of the eddies in turbulence by producing 
simulated signals which, on processing, would yield values for the derived statistics 
(flatness factors of convolutions etc.) similar to those for the turbulence signals. 
This technique was not very productive for the fully developed shear flows in the 
present investigation, but could well be useful for flows containing structures whose 
typical amplitudes relative to the r.m.s. of the remaining motion are somewhat larger. 
One result that could be inferred, however, was that, in order to obtain matching 
statistics as indicated above, it was necessary to impose the constraint that the eddies 
did not overlap (Townsend 1979). 

Some results obtained from one of the simulated signals are shown in figures 9 (a ,  b ) .  
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,fter 1 step 

Initial 
pattern 

In  both cases the eddies were all of the type shown in the lower diagram of figure 9 (a) ,  
and had velocities of + and - the r.m.s. value of the random numbers. They were 
randomly positioned but subject to the condition that they did not overlap, and 
covered 5 % of the total area of the random number array. At this packing density 
and intensity, the eddies give a contribution to u'i of approximately 5 yo. Figure 9 (u) 
shows the result of applying the programme to this data, using an eddy of the type 
that was actually present as an initial guess. It should be remembered that some of 
the loss of resolution in the x-direction is due to the filter. A more revealing test is 
shown in figure 9 ( b ) ,  for which t,he same data was used, but with a less inspired initial 
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FIGURE 9. Test using normally distributed random numbers with 
superimposed ' box eddies' in random positions. 

guess. It can be seen that, after two applications of the programme, the result is almost 
identical to  that obtained with a perfect initial guess. 

6. The large eddies in the plane jet 
With the probe rake aligned with the Y-direction, data was obtained for two probe 

spacings (0.222, and 0.442,) at  five values of Z*. Inspection of the velocity traces 
(figure 7) and the form of the correlation maps (figure 2) suggests flow patterns having 
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FIGURE 10 (a). For caption see p. 261. 

a large-scale circulation in the (x, y)-plane. Accordingly, the data was processed using 
test patterns of the form 

U(X,Y) = k,Yexp[-B(k~X2+k~Y2)1, 

where the constants k, and k, determine the longitudinal and transverse scales of 
the pattern. The processing was performed for a range of values of k, and k,, and for 
a range of settings of the adjust,able parameters in the programme. The effects of these 
variations are discussed in 5 7. 
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FIGURE 10 (6). For caption see p. 261. 

Some of the results are shown in figures lO(a) (Z* = 0.33, narrow probe spacing), 
10(b) (Z* = 0.67, wide probe spacing) and lO(c) (Z* = 1.0, wide probe spacing). 
Results from the two different spacings a t  the same value of Z* were in good agree- 
ment, except possibly where the patterns obtained with the wide spacing show obvious 
signs of insufficient resolution. While it is clear that the scale of the patterns increases 
with increasing Z*, the results are otherwise very similar. In  each case, in addition to 
the changes in size and shape from the initial pattern, an extra velocity field is pro- 
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FIQURE 10. Patterns in the (2, y)-plane at (a)  Z* = 0.33; (a) 0 .67;  and (c) 1.0. 

duced. This is displaced in the stream direction from the original pattern, and has 
velocity peaks in the opposite sense. It appears, therefore, that the result inferred from 
the correlation measurements was substantially correct, and that the structures 
responsible for the flow patterns in the (x, 9)-plane tend to occur in pairs. There are, 
however, two possible pairing configurations that would yield the observed results : 

(i) separation in the x-direction, approximate alignment in the y-direction, and 
opposite circulat'ions (figure 1 1  b ) ;  
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FIGURE 11.  The strainwise roller eddies. 

(ii) separation in both x- and y-directions and similar circulations (figure 11 c). 
The latter configuration would be expected to produce two additional velocity peaks 

either side of the manufactured parts of the patterns. Unfortunately, the transverse 
(y) range covered by the measurements was insufficient? to detect these. Visual in- 
spection of the velocity traces suggests the occurrence of both types. 

It should be noted that, following the first application of the programme, the test 
pattern used for the second step contains the velocity field corresponding to a mixture 
of single and paired structures. The selection of patterns for the second step will be 
weighted slightly in favour of the paired type, since, for a given amplitude, these will 
yield a larger value for the convolution. An estimate of the relative frequency of 
occurrence of pairs, based on the amplitude of the manufactured part of the pattern 
obtained after two steps, will therefore tend to be too high. 

As in the case of the correlation measurements, the similarity of the patterns ob- 
tained at  different values of Z* suggests the presence of roller-type structures, having 
axes in the (2, 2)-plane at some as-yet undetermined angle (estimated from the correla- 
tions a t  135") to the X-axis. Accordingly, the data obtained with the probe rake 
aligned with the 2-direction was processed using test patterns of the form 

representing a slice parallel to the (x,z)-plane through a roller confined to one side 
of the jet centre plane, inclined at  180" - arctan s-l to the X-axis, and with a longi- 
tudinal scale determined by kz. Unlike the test patterns used in the (x, y)-plane, 
where the width was typically 11 probe spacings, allowing 5 possible transverse 

Since an increase in the probe spacing would lead t o  an unacceptable loss of resolution, a 
larger number of probes would be required t o  increase the range. 
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FIGURE 12. Patterns in the (2, 2)-plane. 

positions for the data, the t'est patterns in the (x, 2)-plane were 7 probe spacings wide, 
allowing no transverse alignment. This is because the structures are assumed to  be 
'locked' in position in bhe 2-direction, while being randomly positioned in the Y -  
direction. 

The processing was performed for various values of k, and s, and some of the results 
for s = 0 are shown in figure 12. It should be remembered that the velocity fluctuations 
u(R, 5") have been scaled with (u2(z))*. The results indicate that the roller axes occur 
a t  a range of angles to the X-axis, centred at approximately 140" and covering perhaps 
k 15". These values are somewhat speculative, firstly because they depend on the 
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FIGURE 13. Velocity patterns in the (2, %)-plane at  various y-sections (A ,  3 and c) 

through strainwisejspanwise combinations ( I  and 2). 

convection velocities obtained from the space-time correlations, and secondly because 
the pattern selection procedure is weighted towards structures covering the largest 
area of the test pattern. 

In  the region Z < 0, the additional velocity field generated outside the original 
pattern corresponds to the pairing in the (x, y)-plane. For Z > 0, the generated 
velocity field is consistent with t’he correlation contour map of the (z, 2)-plane (figure 
2 c ) ,  and indicates that the velocity fields of the strainwise and spanwise rollers occur 
simultaneously, implying that the two types are joined together. The various velocity 
patterns in the (x, 2)-plane corresponding to different y-positions within this arrange- 
ment are shown in figure 13 (the paired structures are not shown). For the initial 
pattern in figure 12 the selection should have been confined to types 2 A  and 2 B ,  
which (in combination with the paired structures) would yield an ensemble average 
very similar to the experimental result. Just as in the case of the correlation measure- 
ments, however, there is some evidence of alignment of the velocity field for 2 > 0 in 
figure 12 (2 < 0 for the correlations in figure 2 c )  with the strainwise rollers. While it 
is possible that some of the selected patterns were of type 1 B (and, by implication, 
type C ) ,  the probability of this should have been fairly small (unlike the case of the 
correlations). An alternative possibility is the occasional occurrence of pairs of strain- 
wise rollers having circulations in the same sense, situated on opposite sides of the 
jet centre plane, and joined together by a short spanwise section. The velocity pattern 
near the centre of such an arrangement would appear as a combination of the 1 B and 
2 B velocity fields (joined at Z = 0)) which would have a high probability of being 
selected for inclusion in the average. 

The steepness of the velocity gradient au/az in the averaged pattern, across the 
centre plane, provides justification for the assumption that the structures are ‘locked’ 
in position in the 2-direction. 

It should be noted that while both senses of circulation are equally probable for the 
strainwise structures, the individual spanwise structures may have a preferred sense 
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FIGURE 15. Variation of pattern size (n), maximum velocity (V), and numbers of samples (0) 
with inclusion limit. 

which depends on whether their centres are located at positive or negative values of 2. 
I n  addition, while the various possible orientations of the strainwise/spanwise com- 
binations are equally probable, a given orientation may have a preferred sense for the 
circulation. These possibilities have not been investigated. 

7. Statistical properties 
The convergence property of the programme, and the dependence of the final 

average on the initial pattern are illustrated in figure 14. The size of the pattern has 
been (arbitrarily) defined as half the length of the half-velocity contour, and this is 
plotted in units of 2, against the number of programme steps for three different starting 
patterns and two different settings of the inclusion limit C, in the programme. It 
seems that the distributions of eddy intensities and sizes are such that convergence is 
obtained to  within a range of sizes, and, as one would expect, this range becomes 
narrower with increasing C,. The variation with the number of samples (shown im- 
plicitly in figure 15) is, however, rather slow, so that there is a relatively well-defined 
range of sizes in which structures commonly occur with reasonably large amplitude. 
Structures with sizes outside this range occur less frequently for a given amplitude, 
or with smaller amplitude for a given frequency. 

For the structures shown in figure 11 the definition of size in terms of the length of 
the pattern in the X-direction may be slightly misleading. For rollers of a given 
‘diameter’, the length of the pattern in the (z,y)-plane will depend on the angle of 
the roller axis, and a proportion of the spread of sizes indicated in figure 14 will 
certainly be due to the range of angles suggested in 5 6 .  

Using a fixed test pattern, the variation of the size and intensity of the ensemble 
averages (after two steps) with the inclusion limit C ,  is shown in figure 15. The sizes 
represent t,he lower limit of the range of convergence, and the intensities are expressed 
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FIGURE 16. Apparent distributions of size and intensity plotted as 
contours of constant probability of occurrence (see text). 

as the ratio of the peak velocity in the pattern to (G), measured at  the same value of 
Z*. The diagram also shows the variation of the number of samples included in the 
average. For the range covered, the number of samples changes by a factor of about 
eight, whereas the size and intensity variations are less than 20 % of their respective 
mean values. This slow variation of the averaged peak velocity with the number of 
samples suggests a distribution of intensities which falls quite steeply to zero at  the 
high-intensity limit. It seems, for example, that, while structures with a peak velocity 
of 1.5(2)*  occur quite frequently, intensities of 2.0(2)*  must be very improbable. 
Information about the shape of the distribution at lower intensities is obviously 
difficult to obtain. 

The most probable interpretation of the available information about the distribu- 
tions of eddy sizes and intensities is illustrated in figure 16, where contours of constant 
probability of occurrence (solid lines) are drawn in the (size, intensity)-plane. The 
region inside the dashed line represents samples that would be selected by the recog- 
nition programme, when provided with a test pattern of the indicated size, for inclusion 
in the average. 

The fractional contribution to 2 from the large eddies was estimated by calculating 
the correlation function R,(Z*, (0, y*, 0) ,  t * )  that would result from a random dis- 
tribution of the averaged velocity patterns over the (2, y)-plane, and adjusting the 
amplitude of this function so that it matched the measured correlation function at 
large y*2 + t*2. The adjusted value of R,,(Z*, 0 ,O)  is then the required fractional 
contribution to 2. The presence ofa distribution of sizes leads t o  adegree of uncertainty 
in this procedure, but the contribution seems to be approximately 20 yo at Z* = 0.67. 
While the absence of information about the structures of low intensity prevents the 



Large eddies in turbulent shear JIous. Part 1 267 

detailed determination of the distribution of this energy amongst the individual 
structures, it  is possible to obtain some indication of the occurrence probabilities, or, 
equivalently, the packing density, for structures of reasonably large amplitude. 

These properties should have a considerable influence on the flatness factors of the 
convolutions found in the recognition programme. It would be expected, for example, 
that if the total energy contribution were made up from widely spaced structures of 
correspondingly large amplitude the flatness factor would be substantially greater 
than 3.0 (the value expected and obtained for random numbers). Thus for the simu- 
lated signal used for figures 9 (a, b) ,  having eddies with velocities of f 1.0 r.m.s. unit 
and a 5 % packing density, a flatness factor of 6.9 was obtained. 

The turbulence signals invariably yielded flatness factors between 2-9 and 3.1. 
Simulated signals were constructed with eddies giving a 20 yo contribution to 2 (as 
found in the turbulence), and the individual intensities and corresponding packing 
densities adjusted to obtain flatness factors in the above range. It was found that the 
eddies had to be non-overlapping, and packed at  a density of at least 30 yo. It is not 
possible to construct signals of the specified type with packing densities significantly 
greater than this value, as it seems to be rather close to the average maximum density 
that can be achieved with non-overlapping random packing. Higher densities require 
some degree of organization and, in the present context, would imply preferred 
positions for nearest neighbours. An additional test, performed at a density of 100 % 
using non-overlapping box eddies, arranged as randomly as 100 yo packing allows, 
also yielded a flatness factor in the required range. 

The evidence from the statistical properties of the recognition programme indicates, 
therefore, that the structures must be packed at  a density where the nearest-neighbour 
spacing is unlikely to be greater than the size of the individual structures. It may well 
be the case that, in addition to the pairing discussed in 3 6, more complex local groupings 
tend to occur. 

8. Further developments 
In the present series of experiments, the ensemble-averaging technique has been 

applied only to the streamwise velocity component. A simple modification would 
enable the ensemble-averaged patterns of all three velocity components to be ex- 
t’racted from data obtained using an array of X-wires. One suspects, however, that 
few would relish the prospect of performing such experiments. 

Another possibility is the use of the pattern-recognition technique on data obtained 
by conditional sampling, to investigate the relationship between the large eddies and 
flow features detectable from ‘instantaneous ’ conditions (e.g. the interface between 
turbulent and irrotational fluid). One problem that should be soluble by this method 
is the question of whether the regions of the flow into which the energy at  high wave- 
numbers is concentrated tend to occur in preferred positions relative to the large 
eddies. 

The author would like to thank Mr W. G. Garner for the preparation of the hot- 
wire probes, and the construction of the mechanical apparatus. The author is greatly 
indebted to Dr A. A. Townsend for much invaluable advice. The work was supported 
by the Science Research Council. 
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